RUTGERS

School of Engineering

OBJECTIVE

- ➤ To investigate paths based on the non-enzymatic hydrolysis of the cellulosic and hemicellulosic fractions to produce sugar mixtures.
- ➤ To perform techno-economic and life cycle assessment to evaluate the economic and environmental performance
- ➤ To design and optimize the simultaneous production of HMF and furfural from C5 and C6 mixtures

MOTIVATION

- ➤ Biomass can be processed in a biorefinery which can take advantage of different components of biomass.
- ➤ Biomass be used to produce high-volume but low value fuels as well as low-volume but high value chemicals.
- ➤ According to DOE 20% of transportation fuel and 25% of chemical will be produced from biomass in 2030.

METHODOLOGY

OPTIMIZATION

PROCESS DESIGN AND OPTIMIZATION OF CHEMICAL PRODUCTION FROM BIOMASS FEEDSTOCKS

Department of Chemical & Biochemical Engineering

HYDROLYSIS OF BIOMASS (WEYLAND'S PROCESS)

- > Acid used for hydrolysis is a mixture of sulphuric acid and phosphoric acid.
- > Mixture of sugar and acid is separated using solvent extraction.
- > Solvent can be single or combination of at least two compounds.
- > Theoretical conversion expected to be >90%.

CONVERSION OF GLUCOSE TO HMF

Reaction and flash units are represented by kriging models

Fout

 $= \hat{f}_{R}^{F} (F_{Glu}^{in}, F_{Man}^{in}, F_{Fru}^{in}, F_{HMF}^{in}, F_{LA}^{in}, F_{FA}^{in}, F_{water}^{in}, F_{croH^{2+}}^{in}, F_{H^{+}}^{in}, \tau, m^{i})$ *: is amount of activated carbon that is used in reactive adsorption

$$F_i^{out} = \hat{f}_{FL}^F (F_i^{in}, P_{FL}, Vf_{FL}, T_{feed})$$

• Other units use simplified models

$$Q_{FL} = \hat{f}_{FL}^T (F_i^{in}, P_{FL}, Vf_{FL}, T_{feed})$$

Objective Function:

$$\frac{\sum_{k} R_{k} C_{k}^{R} + \sum_{j} Q_{j} C_{j}^{Q} + ATCC}{\sum_{i} P_{i}}$$

$$ATCC = \frac{TCC}{Project \ Life} = \frac{TDC + TIC + WC}{Project \ Life}$$

$$TDC = \sum_{u} TDC_{u} \left(\frac{CAP_{u}^{\ r}}{CAP_{b}^{\ b}}\right)^{sf}$$

- Zhaojia Lin¹, **Abhay Athaley¹**, Vladimiros Nikolakis², Marianthi lerapetritou¹
- 1. Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey
- 2. Catalysis Center for Energy Innovation & Department of Chemical & Biomolecular Engineering, University of Delaware

OPTIMIZATION RESULTS

Optimum	Reactive Extraction	Reactive Adsorption
Reactor temperature/K	450.21	473.15
Residence time/min	16.27	27
Feed flow of glucose/mol/min	1.7555	1.7555
Activated carbon concentration/g/L	Nil	100
P1/10 ⁵ Pa	9	Nil
Vapor fraction of flash 1	0.6474	Nil
P2/10 ⁵ Pa	0.8	0.3
Vapor fraction of flash 2	0.0482	0.001
P3/10 ⁵ Pa	0.8	0.8
Vapor fraction of flash 2	0.2785	0.7162
Capacity /mol glucose/min	17555	17555
Feed flow of CrCl3/mol/min	0.022	0.6677
Feed flow of HCI/mol/min	0.275	2.6163

- The minimum unit production cost for Reactive Extraction is \$833/metric ton.
- The minimum production cost for Reactive Adsorption is \$896/metric ton

FUTURE WORK

- Performing techno-economic and life cycle analysis of Concentrated acid hydrolysis of Biomass to Glucose
- Adding xylose with its reaction pathway to the above model and performing optimization.
- Performing life cycle analysis of the optimized model.