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MOTIVATION

METHODOLOGY

OBJECTIVE
 To investigate paths based on the non-enzymatic

hydrolysis of the cellulosic and hemicellulosic fractions

to produce sugar mixtures.

 To perform techno-economic and life cycle assessment

to evaluate the economic and environmental

performance

 To design and optimize the simultaneous production of

HMF and furfural from C5 and C6 mixtures

 Biomass can be processed in a biorefinery which can

take advantage of different components of biomass.

 Biomass be used to produce high-volume but low value

fuels as well as low-volume but high value chemicals.

 According to DOE 20% of transportation fuel and 25% of

chemical will be produced from biomass in 2030.

OPTIMIZATION

HYDROLYSIS OF BIOMASS (WEYLAND’S PROCESS)

 Acid used for hydrolysis is a mixture of sulphuric acid and phosphoric acid.

 Mixture of sugar and acid is separated using solvent extraction.

 Solvent can be single or combination of at least two compounds.

 Theoretical conversion expected to be >90%.

CONVERSION OF GLUCOSE TO HMF

• Reaction and flash units are represented by kriging models

• Other units use simplified models
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*: is amount of activated carbon that is used in reactive adsorption
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OPTIMIZATION RESULTS

Optimum
Reactive 

Extraction

Reactive 

Adsorption

Reactor temperature/K 450.21 473.15

Residence time/min 16.27 27

Feed flow of glucose/mol/min 1.7555 1.7555

Activated carbon 

concentration/g/L Nil
100

P1/105Pa 9 Nil

Vapor fraction of flash 1 0.6474 Nil

P2/105Pa 0.8 0.3

Vapor fraction of flash 2 0.0482 0.001

P3/105Pa 0.8 0.8

Vapor fraction of flash 2 0.2785 0.7162

Capacity /mol glucose/min 17555 17555

Feed flow of CrCl3/mol/min 0.022 0.6677

Feed flow of HCl/mol/min 0.275 2.6163

 The minimum unit production cost for Reactive Extraction is

$833/metric ton.

 The minimum production cost for Reactive Adsorption is

$896/metric ton
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FUTURE WORK

 Performing techno-economic and life cycle

analysis of Concentrated acid hydrolysis of

Biomass to Glucose

 Adding xylose with its reaction pathway to the

above model and performing optimization.

 Performing life cycle analysis of the optimized

model.


